

Harborough District Council

Level 2 Strategic Flood Risk Assessment

Detailed Site Summary Table

Site details

Site Code	8143: Proposed Allocation MH1
Address	Land east of Leicester Road and south of Grand Union Canal, Market
	Harborough
Area	22.1 hectares
Current land use	Greenfield
Proposed land use	Residential
Flood Risk	More vulnerable
Vulnerability	

Sources of flood risk

	The site is located alongside the B6047 on the northern edge of Market
	Harbororough and to the west of Great Bowden, within the south of
	Harborough District.
Location of the site	
	The Grand Union Canal (Market Harborough Arm) runs approximately
	145m west of the site and along the site's northern boundary site heading
	northeast.
	The Environment Agency's (EA) 1m resolution 2022 Composite LiDAR
	shows that the topography of the site declines from the southeast at
Topography	approximately 129mAOD to the west at approximately 101mAOD.
	It should be noted that there is a topographical embankment present along
	the northern boundary of the site along the canal.
Existing drainage	With the exception of the canal no other drainage features have been
features	identified on site; however, it is likely that drainage ditches are located

	within the fields and an investigation should be undertaken prior to
	development.
	Available data and mapping:
	EA Flood Map for Planning for Rivers and Sea.
	Data analysis:
	Details of the site's location within each Flood Zone are provided within the
Fluvial	SFRA Site Screening Appendix.
	Elood charactoristics:
	The site is entirely located within Flood Zone 1. Flood Zone 1 represents
	The site is entirely located within 1000 2016 1. 1000 2016 The presents $areas which have loss than 1 in 1000 (0.1%) change of river flooding in a$
	aiven voor
	The site is at your low rick of fluxial floading and there are no significant
Fluvial plus climate	The site is at very low lisk of huvial hooding and there are no significant
change	flooding
	nooding.
	Available data and mapping:
	The EA's Risk of Flooding from Surface Water dataset for the 3.3%, 1%
	and 0.1% AEP events.
	Data analysis:
	3.3% AEP (1 in 30 year) event:
	Proportion is 3%
	Max Depth is 1.29m
Surface water	Max Velocity is 1.06m/s
	Max Hazard is 1.65, Danger to Most
	Mean Depth is 0.53m
	Mean Velocity is 0.22m/s
	Mean Hazard is 1.17, Danger to Some
	1% AFP (1 in 100 year event).
	Proportion is 5%

Max Depth is 1.46m Max Velocity is 1.42m/s Max Hazard is 1.73, Danger to Most

Mean Depth is 0.45m Mean Velocity is 0.35m/s Mean Hazard is 1.04, Danger to Some

0.1% AEP (1 in 1000 year) event: Proportion is 12% Max Depth is 2.09m Max Velocity is 2.13m/s Max Hazard is 2.28

Mean Depth is 0.49m Mean Velocity is 0.67m/s Mean Hazard is 1.07, Danger to Some

Flood characteristics:

The site is shown to be at risk of surface water flooding during all three events ranging from 3% coverage during the 3.3% AEP event, up to 12% during the 0.1% AEP event. During the 3.3% AEP event localised flooding is present to the north and west of the site, with an average hazard rating as a 'Danger to some', and depth of 0.53m.

During the 1% AEP event, the average flood depth is shown to decrease to 0.45m due to the increase in flood extent across the west and north of the site, predominantly located along the B6047.

Flooding is shown to increase in extent and connect as a flow path during the 0.1% AEP event across the west and north of the site, with the most significant hazard and depth ratings along the western proportion of the

	site. The average depth, velocity and hazard during the 0.1% AEP event is
	shown to be 0.49m, 0.67m/s and a 'Danger to Some' respectively.
	Available data and mapping:
	The EA's Risk of Flooding from Surface Water dataset for the 3.3% and 1%
	AEP events with both upper and central climate change scenarios.
	Management Catchment:
	The site is located within the Welland Management Catchment. The EA
	guidance recommends that the Upper End allowance is considered for both
	the 3.3% and 1% AEPs for the 2070's epoch, unless the allowance for the
	2050's epoch is higher, in which case this should be used. This is
	appropriate for development with a lifetime beyond 2100. The
	recommended uplift on peak rainfall intensity for the 3.3% AEP central and
	upper estimates are 25% and 35%, and 25% and 40% for the 1% AEP
	event.
	Data analyzia
Surface water plus	Data analysis: 2.2% AFR (4 in 20 year) control alignets sharped events
climate change	3.3% AEP (1 in 30 year) central climate change event:
	Max Dopth is 1.42m
	Max Deptit is 1.42m
	Max Velocity is 1.75m/s
	Mean Depth is 0.34m
	Mean Velocity is 0.48m/s
	Mean Hazard is 0.93, Danger to Some
	3.3% AEP (1 in 30 year) upper climate change event:
	Proportion is 8%
	Max Depth is 1.54m
	Max Velocity is 1.83m/s
	Max Hazard is 1.9, Danger to Most

Mean Depth is 0.37m Mean Velocity is 0.51m/s Mean Hazard is 0.94, Danger to Some

1% AEP (1 in 100 year) central climate change event:

Proportion is 10% Max Depth is 1.89m Max Velocity is 1.98m/s Max Hazard is 2.17, Danger to All

Mean Depth is 0.44m Mean Velocity is 0.63m/s Mean Hazard is 1.02, Danger to Some

1% AEP (1 in 100 year) upper climate change event:

Proportion is 12% Max Depth is 1.97 Max Velocity is 2.46m/s Max Hazard is 2.32, Danger to All

Mean Depth is 0.45m Mean Velocity is 0.69m/s Mean Hazard is 1.05, Danger to Some

Flood characteristics:

During the surface water climate change events up to 12% of the site is shown to flood along the western and northern portions of the site during the 1% AEP upper climate change event. The flow path crosses the site from the west, across to the northeastern corner of the site, in both the central and upper climate change events, with an average depth and velocity of 0.45m and 0.69m/s within the 0.1% AEP event. The hazard rating is shown to be a 'Danger to Some'.

Reservoir	The site is not located in a Wet or Dry day reservoir flooding extent,
	according to the EA's reservoir flood mapping.
	Available data and mapping:
	The JBA Groundwater Flood Data Map (GW5) is provided as a 5m
	resolution grid.
Groundwater	
	Flood characteristics:
	Groundwater levels on site are shown to be 'low risk' during a 1% AEP
	groundwater flood event.
	Sewer flood records from Anglian Water were unavailable and therefore
	cannot be assessed as part of this assessment. The risk of sewer flooding
Sewers	should be considered within a site-specific assessment prior to
	development. There is no evidence to believe that the site is at risk of
	sewer flooding within Anglian Water's DWMP.
Fleed biotemy	The site is not shown to be located within the EA's Recorded Flood
Flood history	Outlines extent.

Flood risk management infrastructure

Existing defences	The EA's AIMS dataset shows there are no formal flood defences within the
	vicinity of the site.
Potential defences	There is a topographical embankment located to along the northern
Potential defences	boundary of the site along the canal.
	The site is at residual risk of breach or overtopping of the Grand Union
	Canal. The residual risk to the site posed by the canal, including
Residual risk	overtopping and breach must be considered in a site-specific Flood Risk
	Assessment.
	Maintenance arrangements (including funding mechanisms) for the canal
	will need to be demonstrated.

Emergency planning

Flood warning	The site has not been identified to be located within an EA Flood Warning or Flood Alert Area.
Access and egress	Access and egress are available during the 1% AEP plus central and upper climate change surface water events following the current access route between Beech Avenue and Kingston Way to the southeast of the site as flood depths remain less than 300mm. However, it is likely access and egress will take place via the B6047 instead, and therefore access and egress will be impeded as flood depths exceed 300mm. Access and egress should therefore be considered further within a site-specific assessment.
	Developers will need to demonstrate safe access and egress in the 1% AEP surface water event including an allowance for climate change (the design event). It should be noted that raising of access routes must not impede surface water flow paths or lead to an increased risk elsewhere.

Requirements for drainage control and impact mitigation

	Geology and Soils
	The geology consists of:
	Bedrock geology of mudstone, siltstone, limestone and sandstone.
	• There are no superficial deposits identified within the BGS mapping
	at the proposed development site.
	The soils on site are shown to be slowly permeable seasonally wet slightly
Broad-scale	acid but base-rich loamy and clayey soils to the north and lime-rich loamy
assessment of	and clayey soils with impeded drainage to the south. This suggests that
possible SuDS	infiltration may be a viable means of surface water disposal to the north of
	the site.
	SuDS
	JBA Groundwater mapping suggests the site is at 'low risk' of
	groundwater flooding during a 1% AEP flood event, however
	infiltration may not always be appropriate. Offsite discharge may

	 therefore be required to discharge surface water runoff during flood events. The infiltration potential of the site should be confirmed through infiltration testing, in line with BRE 365. The site is located within a Nitrate Vulnerable Zone. Therefore, early engagement with the LLFA and the EA is recommended to determine requirements for the site to manage the impact to surrounding watercourses. Consideration of water quality is likely to be of high importance and demonstrated through the use of the Simple Index Approach. The site has not been identified to be located within a historic landfill site or Source Protection Zone. SuDS measures should follow the discharge hierarchy, and if it is proposed to discharge runoff to a watercourse or asset should be confirmed through surveys and the discharge rate agreed with the asset owner. Due to the topography, any surface water not intercepted via infiltration will drain via gravity to the west of the site. It is therefore recommended that the LLFA and the EA are consulted about viable discharge locations for surface water from the site and their attenuation potential.
Opportunities for wider sustainability benefits and integrated flood risk management	 Implementation of SubS at the site could provide opportunities to deliver multiple benefits including volume control, water quality, amenity and biodiversity, helping meet requirements for the Nitrate Vulnerable Zone. This could provide wider sustainability benefits to the site and surrounding area. Proposals to use SuDS techniques should be discussed with relevant stakeholders (LPA, LLFA and EA) at an early stage to understand possible constraints. The design of the surface water management proposals should take into account the impacts of future climate change over the projected lifetime of the development.

	 Opportunities to incorporate source control techniques such as
	green roofs, permeable surfaces and rainwater harvesting must be
	considered in the design of the site.
	 SuDS are to be designed so that they are easy to maintain, and it
	should be set out who will maintain the system, how the
	maintenance will be funded and should be supported by an
	appropriately detailed maintenance and operation manual.
	 SuDS should be designed with a holistic approach, combining
	ecology, landscape and drainage requirements specific to the site,
	and incorporating Biodiversity Net Gain requirements.
	• Opportunities to incorporate filtration techniques such as filter strips,
	filter drains and bioretention areas must be considered.
	Consideration should be made to the existing condition of receiving
	waterbodies and their Water Framework Directive objectives for
	water quality. The use of multistage SuDS treatment will improve
	water quality of surface water runoff discharged from the site and
	reduce the impact on receiving water bodies.
	 The potential to utilise conveyance features such as swales to
	intercept and convey surface water runoff should be considered.
	Conveyance features should be located on common land or public
	open space to facilitate ease of access.
	 SuDS should be designed in line with <u>Leicestershire County</u>
	Council's SuDS Guidance.

NPPF and planning implications

	The Local Authority will need to confirm that the Sequential Test has been
Exception Test	carried out in line with national guidelines. The Sequential Test will need to
requirements	be passed before the Exception Test is applied.
(Local Authority	The NPPF classifies the usage as "More Vulnerable", this type is taken into
Considerations)	consideration for the Exception Test.
,	

	The site, although entirely located within Flood Zone 1, is located within the
	0.1% AEP surface water flooding extent. Providing the development is
	proposed outside of the areas at risk, the Exception Test is not required for
	this site. Whilst the Exception Test specifically applies to sites within
	fluvial/coastal Flood Zones, should development be proposed within areas
	at risk, Harborough District Council should carefully weigh the benefits of
	development against the risk and satisfy themselves that residents will be
	safe for the lifetime of the development. Detailed surface water flood
	modelling should be undertaken during a site-specific FRA.
	Flood Risk Assessment:
	The Level 1 SFRA has more guidance on this section and any relevant
	policies and information applicable to development within Harborough
	District Council.
	• A site-specific flood risk assessment should be prepared for the site,
	supported by detailed surface water modelling, to demonstrate that
	site users will be safe for the lifetime of the development,
	development of the site will not increase risk elsewhere, and any
Poquiromonto and	residual risk can be safely managed.
quidance for site-	 Given the surface water risk to the site, a site drainage strategy
specific Flood Risk	should be prepared alongside the flood risk assessment.
Assossment	Consultation with Harborough District Council, Leicestershire County
Assessment	Council, Canal and Rivers Trust, and the EA should be undertaken
(Developer	at an early stage.
	 Developers should consult with Anglian Water to ensure that the
oonolaolationo,	development aims to help achieve the targets of the Drainage and
	Wastewater Management Plan.
	 The site specific flood risk assessment should include an
	assessment of the risk to the site from breach or overtopping of the
	Grand Union Canal. Hydraulic modelling should be undertaken to
	understand how the canal interacts with the wider surface water
	catchment.
	 Development plans should use the Level 1 SFRA for Harborough
	District Council, as well as the Local Flood Risk Management

Strategies to identify cumulative flood risk issues. It should also promote an integrated approach to water management.

Guidance for site design and making development safe:

- The developer will need to show, through an FRA, that future users of the development will not be placed in danger from flood hazards throughout its lifetime. It is for the applicant to show that the development meets the objectives of the NPPF's policy on flood risk. For example, how the operation of any mitigation measures can be safeguarded and maintained effectively through the lifetime of the development. (Para 048 Flood Risk and Coastal Change PPG).
- The risk from surface water flow routes should be quantified as part of a site-specific FRA, including a drainage strategy, so runoff magnitudes from the development are not increased by development across any ephemeral surface water flow routes. A drainage strategy should help inform site layout and design to ensure runoff rates do not exceed greenfield rates.
- There are significant capacity issues within the surface water sewer system within Market Harborough. This site sits on the boundary of the town centre catchment and the catchment heading in a northerly direction. It is essential there are no cross-catchment transfers of surface water towards the Market Harborough town centre catchment.
- Arrangements for safe access and egress are unlikely to be possible, and will therefore need to be considered further within a site-specific FRA for the surface water events with an appropriate allowance for climate change, using the depth, velocity, and hazard outputs.

Key messages

The site is generally identified to be at low risk, and development is likely to progress if:

• A site-specific FRA, supported by detailed surface water modelling, is undertaken to assess the risk of surface water flooding in relation to the proposed development, and the access

and egress arrangements. Developers will need to demonstrate safe access and egress in the 1% AEP + climate change surface water event.

- Risk to the site from canal overtopping or breach is assessed and quantified as part of a sitespecific FRA.
- A carefully considered and integrated flood resilient and sustainable drainage design is put forward, including a site-specific Surface Water Drainage Strategy, and SuDS maintenance and management plan and supported by detailed modelling (as above), with development to be steered away from the areas identified to be at highest risk of surface water flooding within the site. This is to be in line with the sequential approach to site layout.
- Infiltration rates are assessed on site as part of a drainage strategy.
- There is early engagement with the LLFA and the EA on the proposed SuDS measures and infiltration rate to discuss requirements on the site meeting relevant conditions due to the sites location within a Nitrate Vulnerable Zone.

Mapping information

The key datasets used to make planning recommendations for this site were the EA's Flood Map for Planning and the EA's Risk of Flooding from Surface Water map. More details regarding data used for this assessment can be found below.

Flood Zones	Flood Zones 2 and 3 have been taken from the EA's Flood Map for
	Planning mapping.
Climate change	The latest climate change allowances (updated May 2022) have been
	applied to the EA's RoFSW dataset.
Surface water	The EA's Risk of Flooding from Surface Water (RoFSW) map has been
	used to define areas at risk from surface water flooding.
Surface water depth,	The EA's Risk of Flooding from Surface Water (RoFSW) has been used to
velocity and hazard	define areas at risk from surface water flooding.
mapping	

